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Abstract.—Regional habitat and fisheries management planning requires estimates of the capacity
of watersheds to produce salmonids. To predict the average abundance of smolts of coho salmon
Oncorhynchus kisutch produced by streams and rivers, we related estimates of smolt abundance
to habitat features derived from maps and discharge records. We assembled a database of 474
annual estimates of smolt abundance from 86 streams in western North America for this analysis.
We found that only stream length and to a lesser extent latitude were useful in predicting mean
smolt abundance. The frequency distribution of annual estimates of smolt abundance from indi-
vidual streams tended towards a normal rather than the more usual lognormal distribution; the
median coefficient of variation in abundance was 37%. Our results are consistent with the view
that, on average, smolt abundance is limited by spatial habitat, but that there is significant annual
variation in abundance probably due to variation in habitat quality caused by climate, flow, or
other factors. We conclude that forecasting smoll yield from stream length and latitude is feasible
at the watershed or regional level, but that the precision of a prediction for a single stream is poor.
A more detailed approach will be required for local forecasting.

For the watershed or region-wide management
of salmonid populations and their habitats, esti-
mates of the productive capacity of streams, rivers,
and lakes in the watershed are required. In the case
of coho salmon Oncorhynchus kisutch, a watershed
can contain a great number of populations, because
this species can occupy both large rivers and small
streams (Sandercock 1991). Thus, estimating the
potential productivity of a major watershed could
entail a costly, detailed investigation of every
stream in the basin (Nickelson et al. 1992; Beechie
et al. 1994). If resources for detailed studies were
not available, a predictive model that makes use
of readily available sources of data would be useful
for rough estimates of production.

The average number of coho salmon smolts pro-
duced annually by a stream is an appropriate mea-
sure of a stream's potential to produce coho salm-
on. In the few long-term studies of coho smolt
production, no consistent relationship between
smolt abundance and the number of parent spawn-
ers has been found, except at very low spawner
abundance (Knight 1980; Holtby and Scrivener
1989). Coho smolt production, therefore, appears
to be largely regulated by density-dependent fac-
tors, probably related to the quality and quantity
of suitable rearing habitat in the stream. Early
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workers hypothesized that rearing space during the
low-flow period in summer may be the limiting
factor (Neave 1949; Chapman 1965). However,
only for one of four streams with sufficient data
(Flynn Creek. Oregon: Knight 1980) has there
been a significant correlation between late summer
fry abundance and subsequent smolt production
(Knight 1980; Andersen and Scrivener 1992). Re-
cent studies (Brown and Hartman 1988; Nickelson
et al. 1992) suggest that the abundance of suitable
overwintering habitat could also limit coho smolt
production.

Based on the hypothesis that the production of
coho smolts is limited by the availability of suit-
able rearing space, Marshall and Britton (1990),
using data collected up to 1979, described predic-
tive models for smolt yield and found a correlation
between smolt abundance and stream area or
stream length. Baranski (1989) found a similar re-
lationship for 10 Washington State streams, as did
Holtby et al. (1990) for a slightly different data
set. In this paper, we expand on these analyses of
coho smolt production by first collating much of
the available data for western North America and
then by comparing smolt abundance to habitat
variables that have been hypothesized to affect
smolt production. The habitat variables we used
were extracted from maps or discharge records,
because we wished to assess the potential of readi-
ly available information for predicting mean smolt
abundance. In addition, we analyzed the interan-
nual variability in smolt abundance as well as fac-
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tors influencing the size and age of coho salmon
smolts. Statistics are provided so that habitat man-
agers can use our results for the estimation of po-
tential coho salmon production in watersheds or
regions.

Data Sources and Analysis
We collected data from studies that contained

estimates of the total annual coho salmon smolt
abundance for one or more years. We only con-
sidered estimates that were from calibrated index
traps or from weirs or fences that sampled a large
proportion of the outmigrant population. In the
case of weirs, smolt abundance estimates are min-
imums because some smolts emigrate outside of
the period of weir operation, and frequently some
are not counted because of weir washouts or leaks.
In some watersheds, estimates of both tributary
and system-wide smolt production were available.
These data are, therefore, not completely indepen-
dent, as is assumed for statistical analyses. In most
cases, each tributary contributed less than 15% of
the system production, so we assumed the depen-
dence of the system estimate on data for any in-
dividual stream was small and all data series from
the system could be considered as independent.
However, in four cases, estimates were not used
in the analysis because of overlaps with other data
series from the same system (see Appendix 1).

Some systems contained lakes that we treated
as extensions of the stream, and we converted the
perimeters of such lakes into equivalent stream
lengths. We felt this conversion was justified be-
cause surveys of juvenile coho salmon in lakes
suggest the fish inhabit nearshore habitat and are
rarely found in the pelagic zone (Swales et al.
1988). We excluded systems where lakes made up
more than half of the rearing length, because our
analysis focused on stream, rather than on lake,
production. We excluded data from small ground-
water-fed side channels and sloughs. Finally, we
excluded some recent studies from streams in the
southern portion of the range because the observed
very small spawning escapements would have
been unlikely to fully seed rearing habitats. In all,
data were collected for 86 systems.

The total number of smolts migrating each year,
and when available, smolt age and mean length by
age were compiled. If smolt age was not recorded
and the stream was south of 48°N, we assumed all
smolts were age 1, because all emigrants that had
been aged south of 48°N were yearlings.

Habitat Variables

We selected several habitat variables that we
thought might be related to coho salmon smolt
production. Two variables we did not include were
stream area, which was not available for many
systems, and the degree and type of land use in
the drainage basin. The latter would have been
difficult to collect because our data extended back
to the 1930s, and quantifying land use over this
period would require extensive historical investi-
gation of human activity in each watershed. We
used the following habitat data in this analysis.

Stream length.—The length of stream available
to rearing coho salmon juveniles upstream from
the trapping site was often described in the source
report. For British Columbia streams, detailed in-
formation was also available in FHIIP (1991) cat-
alogues. In other cases, the upstream limit of coho
salmon rearing was estimated from an examination
of stream gradient on topographic maps (usually
1:50,000 or 1:63,360 scale). For larger systems,
we assumed all small tributaries of low gradient
(<3%) were used by coho juveniles. Stream
lengths were measured on a digitizing tablet.

Stream gradient.—The mean gradient of stream
used for rearing was calculated from contour lines
on the topographic maps. In the case of short, low-
gradient streams for which we could not estimate
the gradient from maps, we assumed a value of
0.001 m-m-1.

Valley slope.—Streams located in broad, flat
floodplains may possess more off-channel habitat
that has been shown to be important for rearing
juveniles (e.g., Brown and Hartman 1988). We at-
tempted to index this potential by estimating the
steepness of the valley walls adjacent to the
stream. To do this, we first located points on to-
pographic maps where contour lines crossed the
stream. We then measured the distance, perpen-
dicular to the stream, from each point to the next
contour line beside the stream, on both sides of
the valley. The slope of the valley was calculated
from the average of the two distances and the el-
evation change between contour lines. On some
streams, measurements were made at points half
way between the contour lines crossing the stream,
and it was assumed the elevation change from this
point to the next contour line parallel to the stream
was half the contour interval. When possible, we
repeated this process at five points along the length
of the stream and averaged the estimates. For some
short streams where the valley slope could not be
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TABLE 1.—Bivariate correlations between habitat variables used in the analysis of streams and rivers. For each pair
of variables, r is listed above P\ N - 83 in all cases. Gradient is the average stream gradient. Valley is the average
valley slope adjacent to the stream. Minflow and maxflow are the ratios of the lowest and highest monthly flows to the
mean annual discharge. Yield is water yield (m3-s '-km 2).

Correlate

Log«,( length)

Log^gradient)

Loge( valley slope)

Log,( latitude)

Log^minflow)

Log^ maxflow)

Log^gradient) Log^valley slope)

-0.42 0.17
<0.001 0.12

0.48
<0.001

Log^ latitude)

-0.10
0.37
0.17
0.11

-0.10
0.35

Logf(minflow)

0.29
0.008
0.27
0.01
0.52

<0.001
0.22
0.04

Log^ maxflow)

-0.17
0.12

-0.34
0.002

-0.42
<0.001
-0.10

0.36
-0.70

Log^yield)

0.16
0.15
0.28
0.01
0.45

<0.001
0.32
0.003
0.66

-0.58

estimated because no contour lines crossed the
stream, we assumed a value of 0.001 m-rrr1.

Latitude.—The latitude of each stream (defined
as the midpoint of the watershed) was obtained
from topographic maps and relevant gazetteers
(USGS 1981, 1983).

Discharge.—For our analyses, we sought esti-
mates of mean annual discharge, minimum month-
ly mean discharge, and maximum monthly mean
discharge. For larger British Columbia streams,
these values were usually obtained from gauging
station summaries (Environment Canada 1991).
Discharge data for gauged U.S. streams were
found in USGS (1993). Discharge data were some-
times available in the original reports of coho
salmon smolt abundances.

For streams without gauging stations, we esti-
mated the discharge from regression equations cal-
culated from data for nearby gauged streams. Dis-
charge data were collected for several streams with
gauging stations in a similar biogeoclimatic zone,
and a regression of discharge on drainage area was
calculated after both variables were log-trans-
formed. Separate regressions were calculated for
the minimum and the maximum monthly mean dis-
charges and the mean annual discharge. These re-
gression equations were then used to predict dis-
charge values of ungauged streams from their
drainage areas.

Discharge variables were correlated with each
other and with stream length. To reduce these cor-
relations, we calculated relative discharge ex-
tremes by dividing the monthly minimum and
maximum discharges by the mean annual dis-
charge. The new variables provide a measure of
the severity of low flow or flood extremes for the
river. We also calculated water yield (mean annual

discharge/drainage area) as an index of the flow
in the river relative to its size. The new variables
were only weakly correlated with stream length
(Table 1).

Data Analysis
We used simple and multiple regression to

search for predictors of mean smolt abundance.
Because of the potential for a type I error resulting
from conducting several analyses, attention was
paid only to the factors that were significant with
P < 0.01. All variables were loge-transformed be-
cause variability in smolt abundance increased
with the mean. For each stream, the number of
years of data was used as a weight in the analysis
(Neter and Wasserman 1974).

We compared the shape of the frequency dis-
tribution of annual estimates of smolt yield from
each stream to the normal distribution using the
Shapiro-Wilks test of normality as implemented
by SAS (SAS Institute 1988). We also tested
whether the distribution could be described by a
lognormal distribution by first using the log<, trans-
formation on smolt abundances. Only systems hav-
ing 10 or more years of data were used in this
analysis.

Results
Mean Smolt Production

Mean coho salmon smolt abundance was strong-
ly correlated with stream length (Figure 1), and
the slope of the regression of log^smolts) on
log^stream length) was not different from 1 (F =
0.1; df = I, 84; P = 0.71). The slope of 1 means
that the number of smolts produced per unit of
stream length was constant and independent of
stream size. Therefore, subsequent analyses were
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FIGURE I.—Relation of mean coho salmon smolt
abundance (Y) to stream length (X) for 83 streams and
rivers (double logt, plot).
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FIGURE 2.—Coho salmon smolt production rates plot-
ted by stream latitude. Vertical lines indicate interquar-
tile ranges estimated by the probability density method
of Rice (1993): horizontal bars are medians.

conducted with production rates (i.e., smolts/km
of stream). Of the habitat variables, smolt pro-
duction rate was only correlated with latitude (Ta-
ble 2).

Examination of the plot of smolt production as
a function of latitude indicated smolt production
was lowest and least variable at the edges of the
latitudinal range, and highest and most variable in
the middle latitudes (Figure 2). Because these data
were not suitable for standard parametric regres-
sion analysis, we summarized this pattern in two
ways that gave similar results. First, we used the
nonparametric probability density technique de-
scribed by Rice (1993) to estimate median and
interquartile ranges for smolt production rates at
2° intervals from 45 to 53°N latitude. The square
root of the number of years of data contributing
to each data point was used as a weight in this
analysis (Table 3). Second, we divided, post hoc,
the data into latitude ranges, and calculated the
mean and standard deviation of smolt production
rates (Table 4). Data were logt,-transformed be-
cause the variance was proportional to the mean.
There were differences in the logXproduction
rates) among these categories (analysis of vari-
ance: F = 12.2; df = 3, 82; P < 0.0001), streams

TABLE 2.—Bivariate correlations between coho salmon
smolt production rates and the habitat variables listed in
Table 1. For each pair, r is listed above P: N = 83.

Log,. Log,, Log, Log,
(gradi- (valley Logr (min- (max- Log,

Correlate ent) slope) (latitude) flow) flow) (yield)

located between 48 and 50°N being the most pro-
ductive (Table 4).

Frequency Distribution of Smolt Abundance
The frequency distribution of annual estimates

of smolt abundance more frequently followed a
normal distribution than the skewed lognormal
form. Of 24 data sets with 10 or more years of
data, 9 were not different from either normal or
lognormal distributions and 2 were different from
both (P < 0.05). In the 13 cases that were signif-
icant for only one distribution, 11 were different
from the lognormal and 2 were different from the
normal distribution. This difference in proportions
was significant (McNemar test, Sokal and Rohlf
1995: x2 = 7.1, df = 1, P < 0.01). Because 20 of
24 cases were not distinguishable from the normal
distribution, we concluded that this distribution
was suitable for summarizing annual variation in
abundance.

Annual Variation in Smolt Production
Annual variation in the number of smolts pro-

duced from each stream was strongly correlated

TABLE 3.—Summary statistics of coho salmon smolt
production rates (smolts/km of stream) estimated by the
nonparametric density estimation procedure of Rice
(1993), by latitude, showing the median and the inter-
quartile and 5, 95% ranges.

Log^ smolts/km) 0.16 -0.20 0.38
0.14 0.07 <0.()01

-0.26 0.10 -0.09
0.02 0.34 0.42

Latitude

45
47
49
51
53

Percent! le ranges

Median

457
642

1,476
924
902

25, 75

291, 868
419. 1.198
823, 2.849
664, 3.129
787. 1.642

5. 95

124, 2.849
161, 2,259
435, 3,650
186, 3,286
345, 3.286
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TABLE 4.—Mean and SD of log^-transformed coho
salmon smolt production rates, summarized by latitude
ranges, with back-transformed estimates of the mode
[exp(.f)J and the 5 and 95% percentile points for the dis-
tributions, calculated as expt* ± 1.645 SD). Mean for the
log-normal distribution is exp(.f + Via2) (Beauchamp and
Olson 1973).

1.8 -

Latitude
range <°N)

<46
46-48
48-50
>50

N
7

33
33
13

Mean

6.128
6.546
7.417
6.734

SD

1.072
0.713
0,655
0.862

Mode

459
696

1.664
841

5,

79.
216,
568.
203,

95%

2.677
2,249
4.883
3.474

with average smolt abundance (Figure 3). If the
slope of this regression were 2, then variability
would follow a constant coefficient of variation
(CV) model. However, the slope was slightly less
than 2 (F = 7.5; df = 1, 58; P < 0.01), which
means that smolt abundance was proportionately
less variable in more productive systems. The me-
dian CV (100-SD/mean) for all streams, for either
smolt numbers or smolt density, was 37% (inter-
quartile range, 26-48%). Annual variation in smolt
production was not correlated with any of the hab-
itat variables in multiple regressions that included
mean smolt abundance (all P > 0.10).

Smolt Size and Age
For streams north of 48°N, where variation in

smolt age was observed, we found a positive re-
lation between age and latitude (data log^-trans-
formed, r = 0.71, P < 0.001, N = 36; Figure 4).
Neither smolt density (smolts/km of stream) or the
other habitat variables were significant in multiple
regressions that included latitude (all P > 0.05).

The analysis of smolt size was complicated by
the observation that in streams with poor growing
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FIGURE 3.—Relation of interannual variance (Y) to
mean coho salmon smolt abundance (double log^ plot).
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FIGURE 4.—Relation of mean coho salmon smolt age
to stream latitude.

conditions, coho salmon juveniles may stay an ex-
tra year or more, which will tend to increase mean
smolt size when averaged over all ages. Therefore,
we restricted our analysis to the length of age-1
smolts as a measure of growing conditions in the
first year of freshwater residence. This analysis
might also be biased because in streams where 2-
or 3-year-old smolts are produced, there is a ten-
dency for the largest individuals to migrate after
the first year (Holtby 1988; Irvine and Ward 1989),
and the average size of migrating age-1 smolts will
be an overestimate of the average growing con-
ditions for all juveniles in their first year. There-
fore, we conducted two analyses, the first with all
age-1 smolt data and the second with a subset of
streams in which fewer than 5% of smolts were
older than age-1. The latter analysis was relatively
unbiased by the interaction between smolt size and
smolt age.

Longer streams tended to produce larger age-1
smolts (Figure 5). Of the other habitat variables,
only valley slope was significant in multiple re-
gressions that included stream length: length, mm
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FIGURE 5.—Relation of mean length of age-1 coho
salmon smolts to the length of stream.
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= 82.4 + 3.9-log^stream length, km) -
3.3-log^valley slope); R2 = 0.44, P < 0.001. The
negative coefficient for valley slope indicates larg-
er smolts are produced by rivers in gentler terrain.
Mean smolt length was not related to smolt density
(r = 0.04, P = 0.73). Results were very similar
when the subset of streams that produced almost
exclusively age-1 smolts were used.

Discussion
Factors Influencing Mean Smolt Abundance

We found that coho salmon smolt abundance
was mostly correlated with stream length, sug-
gesting that in a very general sense smolt produc-
tion is likely limited by the availability of physical
habitat. A combination of other factors such as
rearing habitat quality, spawning habitat, spawner
abundance, and invertebrate production probably
all contribute to the remaining variation in abun-
dance.

We found the abundance of smolts per length of
stream channel was independent of total stream
length. Baranski (1989), Holtby et al. (1990), and
Marshall and Britton (1990), each using smaller
data sets, found the coefficient of the regression
of abundance on stream length was greater than 1,
perhaps because they included fewer large rivers
in their analyses than we did. Other models for
predicting smolt production have used wetted area
rather than stream length (Symons 1979; Reeves
et al. 1989; Kennedy and Crozier 1993). These
models may be best suited to small streams, where
the whole width of the stream is suitable for rear-
ing juveniles. Mundie (1969) distinguished habitat
use between large and small rivers; in large sys-
tems, coho salmon fry are confined to slack water
habitats in the margins of streams, whereas they
find suitable habitat across the widths of small
streams. Hartman (1965) and Lister and Genoe
(1970) also found juvenile coho salmon were con-
fined to the margins of larger rivers, where they
used log jams or overhanging banks. In some
cases, much of the productivity may originate from
tributaries rather than from the main stem (Beechie
et al. 1994). Indeed, if stream area were the vari-
able limiting production of coho salmon smolts
irrespective of stream size, then the exponent of
the log-log regression of smolt production on
stream length would be greater than the value of
1 we found, because area should increase expo-
nentially with stream length. Thus, across the
range of stream sizes considered here, stream
length appears to be the most appropriate general
measure of habitat abundance.

We were unable to improve the precision of pre-
dictions of smolt abundance by using other habitat
variables coupled with stream length. Hubert and
Kozel (1993) found that many stream features used
by juvenile coho salmon (e.g., deep pools, under-
cut banks, and woody debris) are correlated with
channel gradient or stream discharge, which led
us to hypothesize that these variables might serve
as surrogates for instream habitat features. Bar-
anski (1989) found a correlation between coho
salmon smolt production and gradient for 10
Washington streams, and Brown el al. (1989) noted
that catches of coho salmon juveniles were in-
versely related to stream gradient at the sampling
site in a study of 23 coastal streams. Fish abun-
dance and channel gradient are also correlated for
other salmonid species (Chisholm and Hubert
1986; Kozel et al. 1989). However, in our analysis,
neither gradient nor discharge variables were sig-
nificant predictors of smolt yield. The analysis of
gradient was probably weakened because we had
to average gradient over the total length of the
stream that was inhabited by coho salmon, whereas
the actual distribution of juveniles may be restrict-
ed to specific reaches of the river, perhaps near the
spawning grounds or in areas of preferred habitat
(Hartman 1965). Further, the sign of the correla-
tion between habitat features and gradient or dis-
charge varies with the type of feature; for example,
the occurrence of log dams, dammed pools, and
pools with woody cover are all positively related
to stream gradient, but occurrences of deep pools
and lateral pools are negatively related to gradient
(Hubert and Kozel 1993). All of these features
have been shown to be important for juvenile coho
salmon (Hartman 1965; McMahon and Hartman
1989; Nickelson et al. 1992). A more direct in-
ventory of habitat features from aerial photographs
or streamside surveys (including an assessment of
human impacts on the landscape) might be more
successful at improving the precision of predic-
tions of smolt abundance.

Our flow variables were not correlated with coho
salmon smolt yield. In coastal coho salmon
streams, the greatest discharge usually occurs in
winter months, when it is due to rainstorms (e.g.,
Chapman 1962). Inverse correlations between
flood severity and the abundance of smolts the
following spring have been observed (Knight
1980), and the importance of winter flows for over-
winter survival has been noted (Mason 1976;
Tschaplinski and Hartman 1983; McMahon and
Hartman 1989). Low flow during midsummer has
also been implicated as the limiting factor in some
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studies of coho salmon production (Neave 1949;
Wickett 1951; Chapman 1962; Mathews and Olson
1980), although others have found weak or non-
existent relationships between summer flow and
smolt or adult abundance (Smoker 1955; Knight
1980; Scarnecchia 1981), possibly because limit-
ing factors and variation in mortality later in the
year masked the role of the summer period. Cor-
relations between mean annual flow and coho
salmon production have been documented (Smok-
er 1955; Scarnecchia 1981; Anderson and Wilen
1985), suggesting that annual discharge can inte-
grate rearing conditions over the whole year. Thus,
although the exact mechanism may vary, it seems
annual variation in flow can affect coho salmon
production in streams. However, our analysis sug-
gests that the long-term average discharge regime
of a stream does not produce a detectable impact
on the average production of coho salmon smolts.

The abundance of coho salmon smolts per ki-
lometer of stream channel was greatest in the cen-
ter of the species' latitudinal range and decreased
towards the extremes. This pattern has been ob-
served for many other species (Gaston 1990). God-
frey (1965) noted that adult coho salmon abun-
dance was lower at the edges of the range and our
analysis shows the variation in adult abundance is
in part due to clinal variation in the productivity
during the freshwater stage of the life cycle. How-
ever, this conclusion should be considered prelim-
inary, because we found fewer data from streams
at the extremes of the species' range than in the
central British Columbia-Washington region. Al-
though the causes of lower abundances at the ex-
tremes of the range are unknown, a short growing
season and harsh conditions in the north and high
midsummer water temperatures in the south have
been suggested (Sandercock 1991).

Variability in Coho Salmon Smolt Production
We found that the annual variation in coho salm-

on smolt abundance for individual streams was
more likely to be normally distributed rather than
to show the skewed distribution (usually modelled
by the lognormal function) often found for fish
and other populations (Hennemuth et al. 1980;
Myers and Pepin 1990; Fogarty 1993). The log-
normal distribution is usually thought to be gen-
erated when survival over a life history stage re-
sults from randomly and independently varying
survival over a sequence of shorter stanzas (Pe-
terman 1981). The more symmetric distribution we
observed could occur if density-dependent mor-
tality occurs relatively late in the freshwater pe-

riod, which could truncate the occasional occur-
rence of very high densities caused by high seed-
ing rates or good survival during the first part of
the freshwater stage.

The capacity of streams to produce coho salmon
smolts should not be thought of as constant. Al-
though habitat likely limits production, we found
the annual variation in smolt abundance was sub-
stantial (CV = 37%). Correlations of coho salmon
abundance with interannual variation in stream-
flows at different times of the year (Neave 1949;
Smoker 1955; Scarnecchia 1981) support the no-
tion that the carrying capacity is related to the
abundance of suitable habitats at critical times, and
that annual variation in flow will affect the avail-
ability of these habitats. Longer-term variation in
habitat capacity will occur when extreme flows
modify the morphology of the stream. In addition
to annual changes in the carrying capacity of the
stream, variation in abundance will be caused by
density-independent mortality both before and af-
ter the compensatory period. Finally, some of vari-
ability in our data is due to measurement error,
especially for larger systems that are sampled with
index traps rather than with weirs. Estimation error
can also exist when weirs are used, because they
are not always fish proof and they can be washed
away during high flows.

The magnitude of natural variation in coho
salmon smolt production needs to be kept in mind
during the design of monitoring programs for es-
timating the effects of habitat change or enhance-
ment activities on production. Simple sample size
calculations show that using a one-sided /-test to
detect a 50% increase in mean abundance after
habitat enhancement (a = 0.05) will require at
least 5 years of before-and-after monitoring. When
more sophisticated statistical designs are used
(e.g., Carpenter 1990), estimates of variability
summarized here can be used for sample size and
power calculations.

Smolt Size and Age
The correlation between mean smolt age and

latitude we describe agrees with the descriptive
summaries of Drucker (1972) and Sandercock
(1991). Presumably it is due to the shorter growing
season in northern rivers, which prevents juveniles
from reaching sufficient size for smoking after
their first year (Holtby 1988). However, among
streams that produced 95% or more age-1 fish, we
found no relation between smolt size and latitude.
Thus, on this more restricted geographic range,
local factors have a greater influence on growth
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than latitude (Sandercock 1991). Smolt size was
not related to smolt density. This is perhaps not
surprising, because smolt abundance is often un-
related to the abundance of juveniles during the
previous summer, when density-dependent growth
can occur (Holtby and Scrivener 1989).

Larger smolts were produced by longer streams
in broader floodplains. In our database, steeper
streams generally flow out of mountainous areas,
whereas longer, low-gradient streams are found in
lowlands or coastal plains. It is likely that the low-
gradient streams have higher water temperatures
and a longer growing season than high-gradient
streams, and they also have more off-channel hab-
itat, all of which can result in larger smolts (Pe-
terson 1982; Holtby 1988).

Prediction of Coho Salmon Smolt Yields
Despite our attempts to incorporate habitat fea-

tures, stream length remains the most useful pre-
dictor of mean smolt abundance at the overview
or regional level. The use of latitude-specific smolt
production rates can make a slight improvement
to the precision of predictions. Nonetheless, the
confidence limits around a prediction of smolt
yield for a single stream are very wide, and even
the interquartile ranges can vary by a factor of 2
(Table 3). The utility of this approach is improved
somewhat if the production from a group of
streams is desired. For example, for a combined
estimate from n - 10 streams, the standard error
of the estimate (SD/Vw) would be about ±30% of
the mean (data from Table 4). This level of pre-
cision is likely suitable for overview studies; how-
ever, site-specific, data-intensive habitat models
will be required for evaluating coho production
for individual streams. Reeves et al. (1989), Nick-
elson et al. (1992), and Beechie et al. (1994) pro-
vided examples of the detailed approach, although
the precision of their methods is only beginning
to be evaluated.

The limited util i ty of habitat measures for pre-
dicting smolt abundance may also be related to the
complex pattern of movements that have been ob-
served in some populations. In small coastal
streams, fry have been observed to travel through
estuary or nearshore regions to nearby streams to
rear (e.g., Mason 1976). In larger systems, move-
ment has been observed among tributary streams
and the main stem, especially just before winter
(Scarlett and Cederholm 1984). These movements
mean that a proportion of the smolts produced each
year from a stream may have spent a significant
amount of time rearing in other habitats. Thus any

relation between habitat features and the average
abundance of smolts from that stream may be
weakened by the presence of individuals origi-
nating elsewhere.

In summary, because of the many factors that
have been documented to affect coho salmon smolt
production and because different factors may be
important in different streams at different times,
there are likely no general predictive models that
will yield precise estimates of smolt production
potential. Managers requiring precise estimates
will still have to make more detailed habitat mea-
surements; with enough data, region-specific mod-
els can be developed (e.g.. Reeves et al. 1989).
Nonetheless, the current exercise has served to re-
view the available data, and has generated predic-
tive tools suitable at the regional or large water-
shed level. With additional information on fecun-
dity and egg-smolt survival (Bradford 1995), it is
possible to use these tools to convert predicted
smolt yields to escapement targets (e.g., Beidler
et al 1980) when more detailed information is lack-
ing.
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Appendix 1: Smolt Data
TABLE A 1.1.—Smolt data for streams and rivers in Alaska, British Columbia, California. Oregon, and Washington.

Mean length is the length of age-1 smolts; N is the number of years of data.

Smolt abundance

Stream

Porcupine Creek
Sashin Creek
Situk River

Mean

4.694
1,654

213,000

SD

915
621

N

4
10

1

Mean
age

(year)

Alaska
1.80
1.70
1.17

Mean
length
(mm)

84.5
83.0
91.0

Source

Thcdinga and Koski (1984)
Crone and Bond (1976)
Thedinga el al. (1994)

British Columbia
Antigonish Creek
Barren Creek
Bible Camp side channel0

Black Creek

Bonsall Creek
Campbell River
Capilano River
Carnation Creek
Cheakamus River
Chef Creek above fence 2b

Chef Creek between fences6

Chef Creek total system
Coghlan Creek

Cowichan and Koksilah rivers

Cowichan River
Cowichan side channel3

Devereux Creek
Fifteen Mile Creek
French Creek

Hooknose Creek
Hopedale Creek
Hunt's Creek

Kelvin Creek
Keogh River

Keogh River west
Lachmach River

Little Qualicum River
Little Stawamus River
Mamquam Channel3

McTaggart Creek
Meighn Creek
Miller Creek and Pond
Misty Inlet Creek
Misty Outlet Creek
Nile Creek
Pastuch Creek
Post Creek
Qualicum River main stem

Qualicum River system1*

Quinsam River

Rust Creek

2,784
5,006
3,634

59.065

15,820
18,954
56,410
2,9%

38,667
9.362
5,172

14,708
11.787

1.527.750

203.425
2,458

11,945
1,049

29,471

4.987
7.554
5.110

18,134
71,062

776
17,203

11.483
6,659
4,401
3,165
5.634
5,369

764
647

4.973
4.446
1.087

32.040

34,807

42,388

1,295

24,314

5,749
905

2,345
644

3,305
3,222

172,181

940

367
10.364

1.618
3,590
2.086

15.706

447
11.144

639
2,846

2,917

1.381
199
166

15,123

14,659

9,353

690

1
1
1

10

1
I
2

20
1
4
3
3
7

2

1
2
1
2
5

10
3

12

1
11

2
5

1
2
3
1
3
1
1
1
9
2
2

12

15

5

3

1.02
1.06
1.06

1.01
1.00

1.19

1.01

1.04

1.06
1.13
1.16
1.03

1.05
1.03

1 . 1 1
1.08

1.19
1.61

1.04
1.07

1.00
1.13
1.00

1.03
1.11
1.02

1.02

1.04

109.2
104.8
90.0

111.8

118.9
114.1

82.7

94.9

95.5

81.0
103.9
92.5
97.6

95.5
86.2

95.9
99.2

81.2

93.5
77.7

122.0
83.7

109.0
90.9

84.7
86.7
99.5

96.6

92.5

98.6

Finnegan (1991)
Fedorenko and Cook (1982)
Argue et al. (1979)
Clark and Irvine (1989); Fielden et al. (1989);

Labelle (1990); Bocking et al. (1991); Nass et
al. (1993)

Patterson et al. (1979)
Schubert (1983)
Marshall and Britton (1990)
Andersen and Scrivener (1992)
Marshall and Britton (1990)
Marshall and Britton (1990)
Marshall and Britton (1990)
Marshall and Britton (1990)
Schubert (1982); Schubert and Kalnin (1990);

Farwell el al. (1991a. I991b. 1992); Kalnin
and Schubert (1991)

Armstrong and Argue ( 1977); Argue et al.
(1979)

Lister et al. (1971)
Argue et al. (1979)
Fielden et al. (1985)
Fedorenko and Cook (1982)
Fielden et al. (1989); Labelle (1990); Bocking et

al. (1991); Nass etal . (1993)
Hunter (1959)
Fedorenko and Cook (1982)
Lister and Walker (1966); Paine et al. (1975);

Sandercock and Minaker (1975)
Argue e ta l . (1979)
de Hrussoc/.y-Wirth (1979); Irvine and Ward

(1989); Ward (unpublished)c

Irvine and Ward (1989)
Finnegan et al. (1990); Finnegan (1991); Davies

(199 la, 1991b); Davies et al. (1992)
Lister et al. (1979)
Argue and Armstrong (1977)
Shengetal. (1990)
Matthew and Stewart (1985)
Argue and Armstrong (1977)
Patterson et al. (1979)
Irvine and Ward (1989)
Irvine and Ward (1989)
Wickett(1951)
Argue etal . (1979)
Fedorenko and Cook (1982)
Lister and Walker (1966); Paine et al. (1975);

Sandercock and Minaker (1975); Fraser et al.
(1983)

Lister and Walker (1966); Paine et al. (1975);
Sandercock and Minaker (1975); Fraser et al.
(1983)

Reinhardt and MacKinnon (1979); Blackmun et
al. (1985)

Fedorenko and Cook (1982)
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TABLE A1.1 .—Continued.

Smolt abundance

Stream

Ryder Creek
Salmon River main stem

Mean

3,590
17,582

SD

1.923
9,268

N

3
7

Mean
age

(year)

1.05
1.01

Mean
length
(mm)
95.2
95.7

Source

Fedorenko and Cook (1982)
Schubert (1982); Schubert and Kalnin (1990);

Farwell et al. (199 la, 1991b, 1992); Kalnin

Salmon River systemb 29.369 11,927 7 1.01 95.3
and Schubert (1991)

Schubert (1982); Schubert and Kalnin (1990);
Farwell et al. (199 la. 1991 b, 1992); Kalnin

Salwein Creek
Street Creek
Tenderfoot Creek and Pond
Trent River

Upper Keogh River
Upper Paradise channel*
Worth Creek channel3

8.955
1.479
7,923

16,255

6.486
4,752

262

3,169
326

2,546
5,210

2.762
2.266

311

4
3
3
6

4
7
6

1.03
1.04
1.09
1.01

1.04

99.7
104.6
84.9
97.9

and Schubert (1991)
Fedorenko and Cook (1982); Schubert ( 1 984)
Fedorenko and Cook (1982)
Argue and Armstrong (1977)
Fielden et al. (1989); Labelle (1990); Bocking et

al. (1991);Nassetal. (1993)
Irvine and Ward (1989)
Shengetal. (1990)
Shengetal. (1990)

California
Waddell Creek

Deer Creek

Fish Creek
Flynn Creek

Gnat Creek
Needle Branch Creek

Sand Creek
Spring Creek

6,445

2,014

2.689
667

2,048
283

1,207
1.360

4.266

617

373
366

1,041
138

133
583

4

15

3
14

5
14

3
10

Oregon
84.5

110.7
85.2

90.3

106.7
86.1

Shapovalov and Taft (1954)

Chapman (1965); Hall and Lantz (1969);
(1980)

Everest et al. (1988)
Chapman (1965); Hall and Lantz (1969);

(1980)
Willis(1962)
Chapman (1965); Hall and Lantz (1969);

(1980)
Sumner(1953)
Skeesick(1970)

Knight

Knight

Knight

Washington
Bear Creek
Big Beef Creek
Big Rock Creek
Bingham Creek
Carpenter Creek
Christmas Creek
Clearwater River
Coulter Creek
Courtney Creek
Creamer Slougha

Deschutcs River
Goldsborough Creek
Griftin Creek
Harris Creek
Hurst Creek
Kelsey S!ougha

Little Bear Creek
Little Pilchuck Creek
Little Tahuya Creek
Lost Creek
Maple Glen Siougha

Mill Creek
M inter Creek
Mission Creek
Mud Creek
North Creek
Schafer Park Slougha

Schafer Slough tributary0

Shale Creek
Sherwood Creek
Skookum Creek
Snahapish Creek
South Fork Skykomish River

552
30,072
3,464

31,806
21,435

1,110
67.971
13,771
1.156

628
64,675
11.792
49.858
25.772
5,050

504
15,629
28,307
7,208
2,355

326
24,809
28.456
14,307
24,591
11.701

420
584

3,000
12,695
6,380
8,038

208,758

233
9,530

762
16,769

369

25,825
5,025

7.718
1,807

431
10.296
7,069
3,266
1,278

7,997
7,337
5.048

8.310
69

1,439

3,274
29,278

10
12

1
1
1

10
4
1

10
1
6
2
1
9

12
2
2

13
10
9
1

12
11
7
1
2
2
1

11
1
1

13
5

96.5
107.1
104.6
112.2
105.3

124.1
97.4
94.0

109.0
113.8
113.0
90.3

104.7
110.8
115.9
92.8

103.5
106.8
98.2

109.4
116.1

99.8
112.1
97.4

120.1
122.9
108.3

107.2
114.0
89.4

Lenzi (1983); Baranski (1989)
Baranski (1989)
Lenzi (1983)
Seileretal. (1984)
Lenzi (1983)
QDNR (1993)
Seiler et al. (1984); QDNR (1993)
Blankenship and Tivel (1980)
Lenzi (1987); Baranski (1989)
King and Young (1986)
Seileretal. (1981, 1984)
Blankenship and Tivel ( 1980)
Blankenship and Tivel (1980)
Lenzi (1987); Baranski (1989)
QDNR (1993)
King and Young (1985, 1986)
Blankenship and Tivel (1980)
Lenzi (1985, 1987); Baranski (1989)
Lenzi (1985, 1987); Baranski (1989)
Lenzi (1985. 1987); Baranski (1989)
King and Young (1985. 1986)
Lenzi (1987); Baranski (1989)
Salo and Bayliff( 1958)
Lenzi (1987); Baranski (1989)
QDNR (1993)
Blankenship and Tivel (1980)
King and Young (1985, 1986)
King and Young (1985. 1986)
QDNR (1993)
Blankenship and Tivel (1980)
Blankenship and Tivel (1980)
QDNR (1993)
Seileretal. (1981. 1984)
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TABLE A1.1.—Continued.

Smolt abundance

Stream
Stillaguamish River
Tiger Creek
Union River
Upper Chehalis River
Wagley Creek
Wildcat Creek

Mean

388,243
21,530
22,109

116,643
2.246
3,873

SD

158,665

1,553

N

2
1
1
1
1
9

Mean Mean
age length

(year) (mm)

96.9
97.1

102.6

112.0
101.5

Source

Seilercial. (1984)
Lenzi (1983)
Blankenship and Tivel (1980)
Brix and Seiler ( 1977)
Lenzi (1983)
Lenzi (1987); Baranski (1989)

a Sidcchanncls and sloughs were not used in the analysis.
b Estimates for these streams were not used in the analysis.
c B. R. Ward, University of British Columbia.

Appendix 2: Habitat Data
TABLE A2.1.—Habitat data for the streams in Appendix 1. Discharges are the mean annual discharge and the minimum

and maximum monthly mean discharges.

Stream

Porcupine Creek
Sashin Creek
Situk River

Latitude
(°N)

56°ir
55°23'
59°27'

Length
(km)

5.2
1.10

69.4

Drainage
area

(km2)

Alaska

10.0

Gradient
(nvnv1)

0.0030

Valley
slope _

(m-m-1)

0.261

Discharge (m^-s"1)

Mean

0.935

Minimum

0.086

Maximum

2.94

British Columbia
Aniigonish Creek
Barrett Creek
Bible Camp side channel
Black Creek
Bonsall Creek
Campbell River
Capilano River
Carnation Creek
Cheakamus River
Chef Creek above fence 2
Chef Creek between fences
Chef Creek total system
Coghlan Creek
Cowichan River
Cowichan side channel
Devcrcux Creek
Fifteen Mile Creek
French Creek
Hooknose Creek
Hopedale Creek
Hunt's Creek, Qualicum system
Kelvin Creek
Keogh River total system
Keogh River, upper
Keogh River, west tributary
Lachmach River
Little Qualicum River
Little Stawamus River
Mamquam Channel
McTaggart Creek
Meighn Creek
Miller Creek and Pond
Misty Inlet Creek
Misty Outlet Creek
Nile Creek
Pastuch Creek
Post Creek
Qualicum River main stem

54°14'
49°07'
48°47f

49°52'
48°53'
49°02'
49°18'
48°56'
49°48'
49*27'
49°27'
49°27'
49°07'
48°46'
48°46'
51°10'
49°07'
49021'
52°08'
49°06'
49°23'
48°45'
50°40'
50°39'
50°32'
54°17'
49*20'
49°42'
49044'
51°27'
49°45'
48°37'
50°36'
50°37'
49°25'
48°47'
49°06'
49°23'

2.23
1.60
1.21

33.00
11.20
37.80
23.30

3.10
15.10
3.48
0.82
4.30
5.05

124.96
0.82

17.98
0.64

22.09
5.83
2.49
1.40
5.50

21.80
8.24
1.61

13.75
26.00
3.70
0.36
9.17
3.20
1.40
1.92
4.24
6.04
4.28
1.98
9.75

10.8
0.37

72.8
13.0
63.7

197
10.1

1,010

26.4
14.2

544

74.0
2.0

58.3
14.7
0.93

17.6
59.0

129
24.3
15.9
41.2

237
3.1

21.0
2.6
1.1

11.8
14.3
15.0
5.7

27.0
130

0.045
0.004
0.000
0.030
0.008
0.002
0.010
0.020
0.040
0.020
0.000
0.020
0.040
0.003
0.000
0.020
0.031
0.010
0.040
0.002
0.020
0.010
0.010
0.007
0.015
0.020
0.014
0.024
0.000
0.010
0.030
0.016
0.010
0.007
0.030
0.014
0.031
0.010

0.131
0.001
0.000
0.028
0.062
0.043
0.030
0.220
0.280
0.043
0.001
0.043
0.115
0.093
0.00 1
0.185
0.038
0.086
0.140
0.001
0.204
0.152
0.094
0.244
0.053
0.215
0.154
0.106
0.001
0.177
0.063
0.048
0.026
0.025
0.180
0.063
0.081
0.137

1.53
0.007

3.73
0.550
2.35

20.2
0.840

31.5

1.10
0.428

39.4

6.43
0.047
2.86
1.93
0.020
0.678
2.90
9.85
2.38
1.66
4.16

11.8
0.195

0.355
0.162
0.025
1.29
1.51
1.01
0.175
0.888
6.63

0.565
0.000

0.286
0.080
0.464
4.27
0.120

16.0

0.080
0.040
5.79

1.99
0.002
0.217
0.690
0.000
0.049
0.220
2.36
0.492
0.330
1.35
2.05
0.121

0.049
0.103
0.002
0.249
0.298
0.200
0.012
0.115
0.620

2.20
0.031

7.27
1.07
3.88

28.2
1.72

83.3

2.51
0.946

82.9

8.83
0.150
5.76
2.74
0.073
1.65
5.84

16.7
3.82
2.63
5.78

22.2
0.319

1.38
0.27
0.093
2.02
2.39
1.90
0.506
1.73

13.1



64 BRADFORD ET AL.

TABLE A2.1 .—Continued.

Stream

Qualicum River system
Quinsam River
Rust Creek
Ryder Creek
Salmon River main stem
Salmon River system
Salwein Creek
Street Creek
Tenderfoot Creek and Pond
Trent River
Upper Paradise channel
Worth Creek channel

Waddell Creek

Deer Creek
Fish Creek
Rynn Creek
Gnat Creek
Needle Branch Creek
Sand Creek
Spring Creek

Bear Creek
Big Beef Creek
Big Rock Creek
Bingham Creek
Carpenter Creek
Christmas Creek
Clearwater River
Coulter Creek
Courtney Creek
Creamer Slough
Deschutes River
Goldsborough Creek
Griffin Creek
Harris Creek
Hurst Creek
Kelsey Slough
Little Bear Creek
Little Pilchuck Creek
Little Tahuya Creek
Lost Creek
Maple Glen Slough
Mill Creek
Minter Creek
Mission Creek
Mud Creek
North Creek
Schafer Park Slough
Schafer Slough Tributary
Shale Creek
Sherwood Creek
Skookum Creek
Snahapish Creek
South Fork Skykomish River
Stillaguamish River
Tiger Creek
Union River
Upper Chehalis River
Wagley Creek
Wildcat Creek

Latitude
(°N)

49°23'
49°59'
49°06'
49°06'
49°08'
49°08'
49°06'
49°06'
49°55'
49°38'
49°50'
49°H'

37°06'

44°32'
45°09'
44°3I'
46° 12'
44°3lf

45°17'
45°37'

47°29'
47°39'
47*49'
47°09'
47°58'
47o39'
47°33'
47°24'
47*28'
47°06'
46°57'
47°13'
47°37'
47°21'
47°34'
47W
47°46'
47°59'
47<>27'
47°39'
47°06'
47° 12'
47°22'
47°26'
47°34'
47°46'
47°06'
47°06'
47°38'
47*23'
47°09'
47°39'
47°50'
48° 14'
48° 14'
47°27'
46°35'
47°51'
47°39'

Length
(km)

11.15
54.88
0.30
4.14

26.23
31.28

6.00
1.60
0.61
7.92
0.42
0.15

10.30

2.32
16.70

1.43
4.8
0.97
9.70
0.47

2.36
16.40
4.20

22.20
20.60

9.30
151.7
24.20

3.57
0.50

54.00
37.00
17.50
11.61
7.8
0.32

12.70
9.74
1.39
3.38
0.40

16.51
16.70
15.15
3.1

20.30
0.52
0.08
7.9

22.70
12.90
19.2
92.40

249.80
5.79

15.01
363.90

3.70
6.72

Drainage
area

(km2)

148
209

0.09
13.0
49.0
85.0
2.6
5.0
0.46

72.0

California
61.3

Oregon
3.04

171
2.02

0.75
39.5

1.79

Washington
31.2
35.7
16.0
90.7
90.0
20.5

396
97.9
12.8

414
84.7
42.2
80.3
15.1

10.9
79.3

0.87
18.9

184
35.5
75.1
16.4
65.5

15.2
166.5
92.5
48.1

932
2,011

16.6
91.9

2.318
6.29

27.5

Gradient
(nvm ')

0.010
0.010
0.000
0.030
().(X)2
0.003
0.001
0.003
0.025
0.020
().(X)0
0.000

0.01 1

0.018
0.008
0.025

0.014
0.006
0.049

0.030
0.010
0.025
0.010
0.007
0.004
0.005
0.01 1
0.023
0.000
0.003
0.006
0.003
0.008
0.008
0.000
0.006
0.006
0.015
0.040
0.000
0.003
0.01 1
0.010
0.008
0.006
0.000
0.000
0.006
0.004
0.004
0.003
0.009
0.003
0.009
0.016
0.001
0.011
0.020

Valley
slope

(m-m ' )

0.145
0.055
0.001
0.090
0.108
0.326
0.001
0.001
0.000
0.239
0.001
0.001

0.148

0.274
0.286
0.199

0.353
0.043
0.186

0.217
0.250
0.016
0.128
0.040
0.260
0.115
0.071
0.098
0.001
0.103
0.034
0.300
0.108
0.191
O.(XK)
0.084
0.026
0.088
0.268
0.001
0.086
0.098
0.176
0.121
0.076
0.001
0.001
0.180
0.121
0.092
0.174
0.127
0.076
0.123
0.100
0.029
0.025
0.287

Discharge (m3-s ' )

Mean

7.30
8.49
0.001
0.388
1.44
3.57
0.063
0.131
0.026
3.68

0.604

0.174
11.03
0.115

0.043
2.28
0.102

0.764
5.41
0.925
5.20
5.17
1.18

22.59
5.62
0.740

23.61
4.86
2.43
4.61
0.873

0.633
4.55
0.051
1.09

10.52
2.05
4.31
0.948
3.76

0.878
9.42
5.31
2.77

53.0
100

0.957
5.28

79.3
0.365
1.58

Minimum

1.95
2.20
0.000
0.035
0.240
1.43
0.003
0.007
0.020
0.282

0.011

0.014
2.11
0.010

0.004
0.163
0.009

0.236
0.970
0.274
1.09
1.09
0.334
3.53
1.16
0.230

3.66
1.03
0.594
0.991
0.262

0.203
0.981
0.027
0.313

1.92
0.518
0.940
0.280
0.843

0.263
1.75
1 . 1 1
0.659
6.98

11.6
0.282
1.10
8.10
0.131
0.422

Maximum

14.7
17.1
0.008
0.872
3.04
8.57
0.192
0.355
0.052
7.19

0.922

0.542
17.8
0.357

0.130
7.35
0.316

1.33
13.5

1.64
11.4
11.3
2.17

59.2
12.4

1.28

62.2
10.6
4.85
9.95
1.54

1.07
9.81
0.064
1.98

25.1
3.99
9.24
1.69
7.93

1.55
22.2
11.7
5.62

154
315

1.71
11.6

293
0.579
3.00


